
 

4 Digital Fundamentals

 

human beings rather than the laws of physics. A traffic light’s behavior is predominantly defined by
human beings rather than by natural physical laws. This book is concerned with the design of digital
systems that are suited to the algorithmic requirements of their particular range of applications. Dig-
ital logic and arithmetic are critical building blocks in constructing such systems.

An algorithm is a procedure for solving a problem through a series of finite and specific steps. It
can be represented as a set of mathematical formulas, lists of sequential operations, or any combina-
tion thereof. Each of these finite steps can be represented by a 

 

Boolean logic

 

 equation. Boolean logic
is a branch of mathematics that was discovered in the nineteenth century by an English mathemati-
cian named George Boole. The basic theory is that logical relationships can be modeled by algebraic
equations. Rather than using arithmetic operations such as addition and subtraction, Boolean algebra
employs logical operations including AND, OR, and NOT. Boolean variables have two enumerated
values: true and false, represented numerically as 1 and 0, respectively.

The AND operation is mathematically defined as the product of two Boolean values, denoted A
and B for reference. 

 

Truth tables 

 

are often used to illustrate logical relationships as shown for the
AND operation in Table 1.1. A truth table provides a direct mapping between the possible inputs and
outputs. A basic AND operation has two inputs with four possible combinations, because each input
can be either 1 or 0 — true or false. Mathematical rules apply to Boolean algebra, resulting in a non-
zero product only when both inputs are 1. 

Summation is represented by the OR operation in Boolean algebra as shown in Table 1.2. Only
one combination of inputs to the OR operation result in a zero sum: 0 + 0 = 0.

AND and OR are referred to as 

 

binary operators, 

 

because they require two operands. NOT is a

 

unary operator

 

, meaning that it requires only one operand. The NOT operator returns the comple-
ment of the input: 1 becomes 0, and 0 becomes 1. When a variable is passed through a NOT opera-
tor, it is said to be 

 

inverted

 

.

 

TABLE 

 

1.1 AND Operation Truth Table

 

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

 

TABLE 

 

1.2 OR Operation Truth Table

 

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1
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Digital Logic 5

 

Boolean variables may not seem too interesting on their own. It is what they can be made to rep-
resent that leads to useful constructs. A rather contrived example can be made from the following
logical statement:

“If today is Saturday or Sunday and it is warm, then put on shorts.”

Three Boolean inputs can be inferred from this statement: Saturday, Sunday, and warm. One Bool-
ean output can be inferred: shorts. These four variables can be assembled into a single logic equation
that computes the desired result,

shorts = (Saturday OR Sunday) AND warm

While this is a simple example, it is representative of the fact that any logical relationship can be ex-
pressed algebraically with products and sums by combining the basic logic functions AND, OR, and
NOT.

Several other logic functions are regarded as elemental, even though they can be broken down
into AND, OR, and NOT functions. These are not–AND (NAND), not–OR (NOR), exclusive–OR
(XOR), and exclusive–NOR (XNOR). Table 1.3 presents the logical definitions of these other basic
functions. XOR is an interesting function, because it implements a sum that is distinct from OR by
taking into account that 1 + 1 does not equal 1. As will be seen later, XOR plays a key role in arith-
metic for this reason.

All binary operators can be chained together to implement a wide function of any number of in-
puts. For example, the truth table for a ten-input AND function would result in a 1 output only when
all inputs are 1. Similarly, the truth table for a seven-input OR function would result in a 1 output if
any of the seven inputs are 1. A four-input XOR, however, will only result in a 1 output if there are
an odd number of ones at the inputs. This is because of the logical daisy chaining of multiple binary
XOR operations. As shown in Table 1.3, an even number of 1s presented to an XOR function cancel
each other out.

It quickly grows unwieldy to write out the names of logical operators. Concise algebraic expres-
sions are written by using the graphical representations shown in Table 1.4. Note that each operation
has multiple symbolic representations. The choice of representation is a matter of style when hand-
written and is predetermined when programming a computer by the syntactical requirements of each
computer programming language.

A common means of representing the output of a generic logical function is with the variable Y.
Therefore, the AND function of two variables, A and B, can be written as Y = A & B or Y = A*B. As
with normal mathematical notation, products can also be written by placing terms right next to each
other, such as Y = AB. Notation for the inverted functions, NAND, NOR, and XNOR, is achieved by

 

TABLE 

 

1.3 NAND, NOR, XOR, XNOR Truth Table

 

A B A NAND B A NOR B A XOR B A XNOR B

0 0 1 1 0 1

0 1 1 0 1 0

1 0 1 0 1 0

1 1 0 0 0 1
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